Google Offers Update on Its Human-Like Text-To-Speech System





In the post, the team describes how the system works and offers some audio samples, which Ruoming Pang and Jonathan Shen, authors of the post, claim were comparable to professional recordings as judged by a group of human listeners. The authors have also written a paper with the rest of their Google teammates describing their efforts, and have posted it to the arXiv preprint server.

For many years, scientists have been working to make computer generated speech sound more human and less robotic. One part of that mission is developing text-to-speech (TTS) applications, as the authors note. Most people have heard the results of TTS systems, such as the automated voice systems used by many corporations to field customer calls. In this new effort, the group at Google has combined what it learned from its Tacotron and WaveNet projects to create Tacotron 2—a system that takes the science to a new level. In listening to the provided samples, it is quite difficult and sometimes impossible to tell if a voice is a human or a TTS system voice.

The team also notes that they are still working to improve the system, most notably to overcome problems with complex words and to make it work in real time. They would also like to add more emotion to the voice so listeners could actually hear happiness or sadness, for example, or to detect displeasure. Doing so would not only advance the science, but it would make interactions with digital assistants more intimate.